Parameter Estimation for Wavelet Transformed Ultrasonic Signals

Andrew White, Jongeun Choi, and Jung-Wuk Hong

June 7, 2010

- Wavelet transform is an integration procedure which has applications in:
 - Signal and Image Processing
 - Wave Analysis
 - Material Evaluation
 - Non-Destructive Testing and Evaluation
- Develop an algorithm to estimate the parameters of wavelet transformed ultrasonic signals.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のの⊙

- Wavelet transform is an integration procedure which has applications in:
 - Signal and Image Processing
 - Wave Analysis
 - Material Evaluation
 - Non-Destructive Testing and Evaluation
- Develop an algorithm to estimate the parameters of wavelet transformed ultrasonic signals.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のの⊙

The continuous wavelet transform of a signal x(t) is defined in a convolution form as

$$W(a,b) = \int x(t)\bar{\psi}_{a,b}(t)dt,$$

where $\bar{\psi}_{a,b}(t)$ is the complex conjugate wavelet function, *a* is the scaling factor, and *b* is the translation factor. $\psi_{a,b}(t)$ has the form of

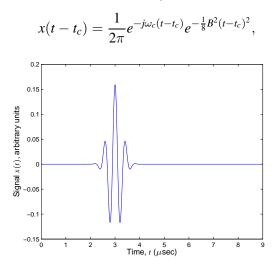
$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t-b}{a}\right),$$

where $\psi(t_w)$ is the wavelet function and $t_w = \frac{t-b}{a}$.

・ロト・西・・田・・田・・日・

Gaussian Spectrum Signal

Consider a Gaussian spectrum signal shifted in time by t_c



Using the Morlet wavelet function

$$\psi(t_w)=e^{-j2\pi t_w}e^{-\frac{1}{2}t_w^2},$$

the closed-form solution of the wavelet transform of the Gaussian spectrum signal $x(t - t_c)$ is

$$W(\tau,\omega;t_c) = A(\omega)e^{\kappa(\tau-t_c,\omega)}e^{j\chi(\tau-t_c,\omega)},$$

where

$$A(\omega) = \frac{1}{2} \sqrt{\frac{2\eta}{\pi (B^2 + 4\eta^2)}} e^{\frac{-2(\omega - \omega_c)^2}{B^2 + 4\eta^2}},$$

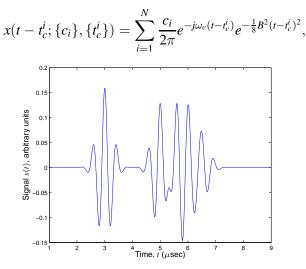
$$\kappa(\tau - t_c, \omega) = \frac{-B^2 \eta^2}{2(B^2 + 4\eta^2)} (\tau - t_c)^2,$$

$$\chi(\tau - t_c, \omega) = \frac{4\omega_c \eta^2 (t_c - \tau) + B^2 \omega (t_c - \tau)}{B^2 + 4\eta^2}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ の

Gaussian Spectrum Signal with Multiple Echoes

Consider a Gaussian spectrum signal with N reflected echoes



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From the superposition principle, the closed-form analytical solution of the wavelet transform is

$$\tilde{W}(\tau,\omega;\{c_i\},\{t_c^i\}) = \sum_{i=1}^N c_i A(\omega) e^{\kappa(\tau-t_c^i,\omega)} e^{j\chi(\tau-t_c^i,\omega)},$$

where

$$\begin{split} A(\omega) &= \frac{1}{2} \sqrt{\frac{2\eta}{\pi (B^2 + 4\eta^2)}} e^{\frac{-2(\omega - \omega_c)^2}{B^2 + 4\eta^2}},\\ \kappa(\tau - t_c^i, \omega) &= \frac{-B^2 \eta^2}{2(B^2 + 4\eta^2)} \left(\tau - t_c^i\right)^2,\\ \chi(\tau - t_c^i, \omega) &= \frac{4\omega_c \eta^2 \left(t_c^i - \tau\right) + B^2 \omega \left(t_c^i - \tau\right)}{B^2 + 4\eta^2}. \end{split}$$

Goal: Recover $\theta^{\star} := [c_1, \cdots, c_N, t_c^1, \cdots, t_c^N]^T \in \mathbb{R}^{2N}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

The nonlinear least squares (NLS) estimate $\hat{\theta}$ is found by

$$\min_{\theta \in \mathbb{R}^{2N}} S(\theta), \quad S(\theta) := \sum_{\tau_m=1}^{\tau_M} \sum_{\omega_m=1}^{\omega_M} \left| y(\tau, \omega) - \tilde{W}(\tau, \omega; \theta) \right|^2$$

where $y(\tau, \omega)$ represents the noisy version of the closed-form model $\tilde{W}(\tau, \omega; \theta^{\star})$

$$y(\tau,\omega) = \tilde{W}(\tau,\omega;\theta^*) + v(\tau,\omega),$$

(日) (日) (日) (日) (日) (日) (日)

and $v \sim \mathcal{N}(0, \sigma_v^2)$ is the Gaussian white noise due to the measurement and numerical errors.

For *M* number of post-processed data points the covariance matrix *P* of the estimate $\hat{\theta}$ is obtained by

$$P := \mathbb{E}(\hat{\theta} - \mathbb{E}(\hat{\theta}))(\hat{\theta} - \mathbb{E}(\hat{\theta}))^{T}.$$

From the Cramer-Rao theorem, the covariance matrix *P* of any unbiased estimator is lower bounded by the Cramer-Rao Lower Bound (CRLB), or the inverse of the Fisher Information Matrix (FIM)

$$P \succeq \operatorname{FIM}(\theta^{\star})^{-1} = \frac{\sigma^2 \Sigma_{2M}^{-1}(\theta^{\star})}{M} =: \operatorname{CRLB}$$

where

$$\Sigma_{2M} := \frac{1}{M} \sum_{\tau_m=1}^{\tau_M} \sum_{\omega_m=1}^{\omega_M} \operatorname{Re}\left\{ \tilde{W}'(\tau,\omega;\theta^\star) \tilde{W}'(\tau,\omega;\theta^\star)^* \right\}.$$

Since the c_i parameters appear linearly, the residual $S(\theta)$ can be expressed as

$$S(\theta) = \sum_{\tau_m=1}^{\tau_M} \sum_{\omega_m=1}^{\omega_M} |y(\tau,\omega) - h(\tau,\omega)\theta_c|^2$$

where

$$\theta_c = \begin{bmatrix} c_1 & c_2 & \cdots & c_N \end{bmatrix}_{\tau}^{T}$$

$$h(\tau, \omega) = \begin{bmatrix} h_1(\tau, \omega) & h_2(\tau, \omega) & \cdots & h_N(\tau, \omega) \end{bmatrix},$$

and

$$h_i(\tau,\omega) = A(\omega)e^{\kappa(\tau-t_c^i,\omega)}e^{j\chi(\tau-t_c^i,\omega)}$$

The residual $S(\theta)$ can be re-written as

$$S(\theta_c, \theta_{t_c}) = \left(Y - H(\theta_{t_c})\theta_c\right)^{\mathrm{T}} \left(Y - H(\theta_{t_c})\theta_c\right),$$

where

$$Y = \begin{bmatrix} y(\tau_1, \omega_1) \\ \vdots \\ y(\tau_1, \omega_M) \\ \vdots \\ y(\tau_M, \omega_1) \\ \vdots \\ y(\tau_M, \omega_M) \end{bmatrix} \text{ and } H(\theta_{t_c}) = \begin{bmatrix} h(\tau_1, \omega_1) \\ \vdots \\ h(\tau_1, \omega_M) \\ \vdots \\ h(\tau_M, \omega_1) \\ \vdots \\ h(\tau_M, \omega_M) \end{bmatrix}$$

and

$$\theta_{t_c} = \begin{bmatrix} t_c^1 & t_c^2 & \cdots & t_c^N \end{bmatrix}^{\mathrm{T}}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

For a given θ_{t_c} , the θ_c that minimizes $S(\theta_c, \theta_{t_c})$ is the linear least squares estimate

$$\hat{\theta}_c = \left(H^{\mathrm{T}}(\theta_{t_c})H(\theta_{t_c})\right)^{-1}H^{\mathrm{T}}(\theta_{t_c})Y.$$

When $\hat{\theta}_c$ is substituted into $S(\theta_c, \theta_{t_c})$ the residual is

$$S(\hat{\theta}_c, \theta_{t_c}) = Y^{\mathrm{T}} \left[I - H(\theta_{t_c}) \left(H^{\mathrm{T}}(\theta_{t_c}) H(\theta_{t_c}) \right)^{-1} H^{\mathrm{T}}(\theta_{t_c}) \right] Y,$$

which reduces the estimation of θ_{t_c} to the maximization of

$$\max_{\theta_{t_c}\in\Theta_{t_c}} F(\theta_{t_c}); \quad F(\theta_{t_c}) = Y^{\mathrm{T}} H(\theta_{t_c}) \left(H^{\mathrm{T}}(\theta_{t_c}) H(\theta_{t_c}) \right)^{-1} H^{\mathrm{T}}(\theta_{t_c}) Y,$$

where $\Theta_{t_c} = \{\theta_{t_c} : \tau_{\min} \leq \theta_{t_c} \leq \tau_{\max}\}.$

O'

The initial conditions for the maximization of $F(\theta_{t_c})$ are obtained by a grid search of

$$\bar{F}(t_c) = Y^{\mathrm{T}}\bar{H}(t_c) \left(\bar{H}^{\mathrm{T}}(t_c)\bar{H}(t_c)\right)^{-1} \bar{H}^{\mathrm{T}}(t_c)Y$$
wer $\tau_{\min} \leq t_c \leq \tau_{\max}$, with
$$\bar{H}(t_c) = \begin{bmatrix} \bar{h}(\tau_1, \omega_1) \\ \vdots \\ \bar{h}(\tau_1, \omega_M) \\ \vdots \\ \bar{h}(\tau_M, \omega_1) \\ \vdots \\ \bar{h}(\tau_M, \omega_M) \end{bmatrix},$$

and $\bar{h}(\tau,\omega) = A(\omega)e^{\kappa(\tau-t_c,\omega)}e^{j\chi(\tau-t_c,\omega)}.$

Peaks form near the t_c locations for the measured data.

(日) (日) (日) (日) (日) (日) (日)

The Akaike Information Criterion (AIC) is given by

$$AIC = \underbrace{M\ln\left(\frac{S}{M}\right)}_{AIC_1} + \underbrace{2\left(2N+1\right)}_{AIC_2}$$

where S, N, and M are, respectively, the residual, the number of echoes, and the sample size.

- *AIC*¹ decreases with the residual *S*.
- *AIC*₂ penalizes for increasing the size of the model to prevent over fitting.

The Akaike Information Criterion (AIC) is given by

$$AIC = \underbrace{M\ln\left(\frac{S}{M}\right)}_{AIC_1} + \underbrace{2\left(2N+1\right)}_{AIC_2}$$

where S, N, and M are, respectively, the residual, the number of echoes, and the sample size.

- AIC₁ decreases with the residual S.
- *AIC*₂ penalizes for increasing the size of the model to prevent over fitting.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The Akaike Information Criterion (AIC) is given by

$$AIC = \underbrace{M\ln\left(\frac{S}{M}\right)}_{AIC_1} + \underbrace{2\left(2N+1\right)}_{AIC_2}$$

where S, N, and M are, respectively, the residual, the number of echoes, and the sample size.

- AIC₁ decreases with the residual S.
- AIC₂ penalizes for increasing the size of the model to prevent over fitting.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L : N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{tc})$ to find the estimated time of flights $\hat{\theta}_{tc}$.

- Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
- Compute the Akaike information criterion.
- Select the estimated model $\hat{\theta}$ with *N* echoes such that the Akaike information criterion is minimized.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L : N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{t_c})$ to find the estimated time of flights $\hat{\theta}_{t_c}$.

- Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
- Compute the Akaike information criterion.
- Select the estimated model $\hat{\theta}$ with *N* echoes such that the Akaike information criterion is minimized.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L: N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{tc})$ to find the estimated time of flights $\hat{\theta}_{tc}$.

- Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
- Compute the Akaike information criterion.
- Select the estimated model $\hat{\theta}$ with *N* echoes such that the Akaike information criterion is minimized.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L: N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{tc})$ to find the estimated time of flights $\hat{\theta}_{tc}$.

- Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
- Compute the Akaike information criterion.
- Select the estimated model $\hat{\theta}$ with *N* echoes such that the Akaike information criterion is minimized.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L: N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{t_c})$ to find the estimated time of flights $\hat{\theta}_{t_c}$.

- Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
- Compute the Akaike information criterion.
- Select the estimated model $\hat{\theta}$ with *N* echoes such that the Akaike information criterion is minimized.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L: N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{t_c})$ to find the estimated time of flights $\hat{\theta}_{t_c}$.

- Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
- Compute the Akaike information criterion.
- Select the estimated model $\hat{\theta}$ with *N* echoes such that the Akaike information criterion is minimized.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L: N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{t_c})$ to find the estimated time of flights $\hat{\theta}_{t_c}$.

- Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
- Compute the Akaike information criterion.
- Select the estimated model $\hat{\theta}$ with *N* echoes such that the Akaike information criterion is minimized.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L: N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{t_c})$ to find the estimated time of flights $\hat{\theta}_{t_c}$.

- Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
- Compute the Akaike information criterion.

• Select the estimated model $\hat{\theta}$ with *N* echoes such that the Akaike information criterion is minimized.

Input: Gaussian spectrum signal x(t), the center frequency ω_c , and the bandwidth *B*.

Output: The estimated parameters $\hat{\theta}$ and the number of echoes *N*.

- Compute wavelet transform coefficients of x(t).
- Determine lower and upper bounds on the number of echoes $N \in [N_L, N_U]$.
- for $N = N_L: N_U$ do
 - The t_c locations of the *N* highest peaks of $\overline{F}(t_c)$ are recorded into t_{c0} .
 - Starting at t_{c0} , perform the maximization of $F(\theta_{t_c})$ to find the estimated time of flights $\hat{\theta}_{t_c}$.
 - Using the estimated time of flights $\hat{\theta}_{t_c}$, compute $\hat{\theta}_c$.
 - Compute the Akaike information criterion.
- Select the estimated model ^û with N echoes such that the Akaike information criterion is minimized.

Realistic Multiple Echoes

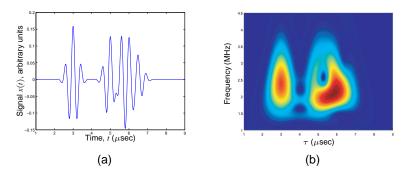


Table: Comparison of the true parameters to the SNLS estimates. The values for t_c^i are expressed in microseconds.

	c_1	c_2	<i>c</i> ₃	c_4	c_5	t_c^1	t_c^2	t_c^3	t_c^4	t_c^5
θ^{\star}	1.0000	0.8500	0.7000	0.5500	0.4000	3.0000	5.0000	5.6000	6.0000	6.5000
$\hat{\theta}$	1.0000	0.8500	0.6999	0.5500	0.4000	2.9999	5.0000	5.5999	5.9999	6.4999

< □ > < □ > < □ > < □ > < □ > < □ >

A Monte-Carlo (MC) simulation was performed with 5000 realizations at a noise level of $\sigma_{\nu} = \frac{0.1 \max(\tilde{W})}{3}$, such that the maximum value of the noise is no more than 10% of the maximum of \tilde{W} .

	θ^{\star}	MC mean	MC Variance	CRLB Variance
c_1	10.0	9.9976	0.0042	0.0042
c_2	7.0	6.9955	0.0042	0.0042
c_3	6.0	5.9944	0.0043	0.0042
t_c^1	2.5	2.5000	$0.5398 imes 10^{-18}$	$4.0929 imes 10^{-25}$
t_c^1 t_c^2 t_c^3	3.0	3.0000	$1.0994 imes 10^{-18}$	$7.5104 imes 10^{-25}$
$t_c^{\tilde{3}}$	4.0	4.0000	$\textbf{1.5329}\times\textbf{10}^{-18}$	5.6529×10^{-25}

Questions?

▲口▶▲圖▶▲≣▶▲≣▶ ■ のQの