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Motivation

Wavelet transform is an integration procedure which has
applications in:

Signal and Image Processing
Wave Analysis
Material Evaluation
Non-Destructive Testing and Evaluation

Develop an algorithm to estimate the parameters of
wavelet transformed ultrasonic signals.
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Wavelet Transform

The continuous wavelet transform of a signal x(t) is defined in a
convolution form as

W(a, b) =
∫

x(t)ψ̄a,b(t)dt,

where ψ̄a,b(t) is the complex conjugate wavelet function, a is the
scaling factor, and b is the translation factor. ψa,b(t) has the
form of

ψa,b(t) =
1√
a
ψ

(
t − b

a

)

,

where ψ(tw) is the wavelet function and tw = t−b
a .



Gaussian Spectrum Signal

Consider a Gaussian spectrum signal shifted in time by tc

x(t − tc) =
1

2π
e−jωc(t−tc)e−

1
8 B2(t−tc)2

,
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Wavelet Transform of Gaussian Spectrum Signal

Using the Morlet wavelet function

ψ(tw) = e−j2πtw e−
1
2 t2w ,

the closed-form solution of the wavelet transform of the
Gaussian spectrum signal x(t − tc) is

W(τ, ω; tc) = A(ω)eκ(τ−tc,ω)ejχ(τ−tc ,ω),

where
A(ω) =

1
2

√

2η
π(B2 + 4η2)

e
−2(ω−ωc)

2

B2+4η2 ,

κ(τ − tc, ω) =
−B2η2

2(B2 + 4η2)
(τ − tc)

2
,

χ(τ − tc, ω) =
4ωcη

2 (tc − τ ) + B2ω (tc − τ )

B2 + 4η2
.



Gaussian Spectrum Signal with Multiple Echoes

Consider a Gaussian spectrum signal with N reflected echoes

x(t − ti
c; {ci}, {ti

c}) =
N∑

i=1

ci

2π
e−jωc(t−tic)e−

1
8 B2(t−tic)

2
,
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Wavelet Transform of Multiple Echoes

From the superposition principle, the closed-form analytical
solution of the wavelet transform is

W̃(τ, ω; {ci}, {ti
c}) =

N∑

i=1

ciA(ω)e
κ(τ−tic,ω)ejχ(τ−tic ,ω),

where
A(ω) =

1

2

√

2η

π(B2 + 4η2)
e

−2(ω−ωc)
2

B2+4η2
,

κ(τ − tic, ω) =
−B2η2

2(B2 + 4η2)

(

τ − tic

)2
,

χ(τ − tic, ω) =
4ωcη

2
(

tic − τ
)

+ B2ω
(

tic − τ
)

B2 + 4η2
.

Goal: Recover θ⋆ := [c1, · · · , cN , t1
c , · · · , tN

c ]
T ∈ R

2N



Nonlinear Least Squares Estimate

The nonlinear least squares (NLS) estimate θ̂ is found by

min
θ∈R2N

S(θ), S(θ) :=
τM∑

τm=1

ωM∑

ωm=1

∣
∣y(τ, ω) − W̃(τ, ω; θ)

∣
∣
2

where y(τ, ω) represents the noisy version of the closed-form
model W̃(τ, ω; θ⋆)

y(τ, ω) = W̃(τ, ω; θ⋆) + v(τ, ω),

and v ∼ N (0, σ2
v ) is the Gaussian white noise due to the

measurement and numerical errors.



Estimate Covariance Matrix

For M number of post-processed data points the covariance
matrix P of the estimate θ̂ is obtained by

P := E(θ̂ − E(θ̂))(θ̂ − E(θ̂))T .

From the Cramer-Rao theorem, the covariance matrix P of any
unbiased estimator is lower bounded by the Cramer-Rao Lower
Bound (CRLB), or the inverse of the Fisher Information Matrix
(FIM)

P � FIM(θ⋆)−1 =
σ2Σ−1

2M(θ⋆)

M
=: CRLB

where

Σ2M :=
1
M

τM∑

τm=1

ωM∑

ωm=1

Re
{

W̃ ′(τ, ω; θ⋆)W̃ ′(τ, ω; θ⋆)∗
}
.



Separable Nonlinear Least Squares

Since the ci parameters appear linearly, the residual S(θ) can
be expressed as

S(θ) =
τM∑

τm=1

ωM∑

ωm=1

|y(τ, ω) − h(τ, ω)θc|2

where

θc = [c1 c2 · · · cN ]
T
,

h(τ, ω) = [h1(τ, ω) h2(τ, ω) · · · hN(τ, ω)] ,

and
hi(τ, ω) = A(ω)eκ(τ−tic ,ω)ejχ(τ−tic ,ω).



Separable Nonlinear Least Squares

The residual S(θ) can be re-written as

S(θc, θtc) =
(

Y − H(θtc)θc

)T(

Y − H(θtc)θc

)

,

where

Y =





























y(τ1, ω1)
...

y(τ1 , ωM)
...

y(τM , ω1)
...

y(τM , ωM)





























and H(θtc ) =
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h(τ1, ωM)
...
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...

h(τM , ωM)





























,

and
θtc =

[
t1
c t2

c · · · tN
c

]T
.



Separable Nonlinear Least Squares

For a given θtc , the θc that minimizes S(θc, θtc) is the linear least
squares estimate

θ̂c =
(
HT(θtc)H(θtc)

)−1
HT(θtc)Y.

When θ̂c is substituted into S(θc, θtc) the residual is

S(θ̂c, θtc) = YT
[

I − H(θtc)
(
HT(θtc)H(θtc)

)−1
HT(θtc)

]

Y,

which reduces the estimation of θtc to the maximization of

max
θtc∈Θtc

F(θtc); F(θtc) = YTH(θtc)
(
HT(θtc)H(θtc)

)−1
HT(θtc)Y,

where Θtc = {θtc : τmin ≤ θtc ≤ τmax}.



Separable Nonlinear Least Squares

The initial conditions for the maximization of F(θtc) are obtained
by a grid search of

F̄(tc) = YTH̄(tc)
(
H̄T(tc)H̄(tc)

)−1
H̄T(tc)Y

over τmin ≤ tc ≤ τmax, with

H̄(tc) =



































h̄(τ1, ω1)

.

.

.
h̄(τ1, ωM)

.

.

.
h̄(τM , ω1)

.

.

.
h̄(τM, ωM)



































,

and h̄(τ, ω) = A(ω)eκ(τ−tc,ω)ejχ(τ−tc,ω).

Peaks form near the tc locations for the measured data.



Optimal Number of Echoes

The Akaike Information Criterion (AIC) is given by

AIC = M ln

(
S
M

)

︸ ︷︷ ︸

AIC1

+ 2 (2N + 1)
︸ ︷︷ ︸

AIC2

where S, N, and M are, respectively, the residual, the number of
echoes, and the sample size.

AIC1 decreases with the residual S.

AIC2 penalizes for increasing the size of the model to
prevent over fitting.
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Algorithm for Separable Nonlinear Least Squares

Input: Gaussian spectrum signal x(t), the center frequency ωc, and
the bandwidth B.
Output: The estimated parameters θ̂ and the number of echoes N.

Compute wavelet transform coefficients of x(t).

Determine lower and upper bounds on the number of echoes
N ∈ [NL,NU].

for N = NL:NU do

The tc locations of the N highest peaks of F̄(tc) are
recorded into tc0.
Starting at tc0, perform the maximization of F(θtc) to find the
estimated time of flights θ̂tc .
Using the estimated time of flights θ̂tc , compute θ̂c.
Compute the Akaike information criterion.

Select the estimated model θ̂ with N echoes such that the Akaike
information criterion is minimized.
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Realistic Multiple Echoes
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Table: Comparison of the true parameters to the SNLS estimates.
The values for ti

c are expressed in microseconds.

c1 c2 c3 c4 c5 t1c t2c t3c t4c t5c
θ⋆ 1.0000 0.8500 0.7000 0.5500 0.4000 3.0000 5.0000 5.6000 6.0000 6.5000
θ̂ 1.0000 0.8500 0.6999 0.5500 0.4000 2.9999 5.0000 5.5999 5.9999 6.4999



Noisy Observations

A Monte-Carlo (MC) simulation was performed with 5000
realizations at a noise level of σv =

0.1 max(W̃)
3 , such that the

maximum value of the noise is no more than 10% of the
maximum of W̃.

θ⋆ MC mean MC Variance CRLB Variance
c1 10.0 9.9976 0.0042 0.0042
c2 7.0 6.9955 0.0042 0.0042
c3 6.0 5.9944 0.0043 0.0042
t1
c 2.5 2.5000 0.5398 × 10−18 4.0929 × 10−25

t2
c 3.0 3.0000 1.0994 × 10−18 7.5104 × 10−25

t3
c 4.0 4.0000 1.5329 × 10−18 5.6529 × 10−25



Questions?


